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On the Geometry of Coincidence-Site Lattices 
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A method involving inspection has been devised for deriving the angular values about an axis [hkl] 
in the cubic system which will lead to a coincidence-site lattice relationship. The idea of a generating 
function is used here in an extension of the procedures evolved by Frank for [100] and [111] rotations 
and by Dunn for [110] rotations. 

Introduction 

Rotational symmetry operations on a lattice bring it 
into complete self-coincidence. However, partial self- 
coincidence can occur for certain other rotations about 
an axis. Two crystal lattices related by such an angular 
rotation about an axis have certain common sites, 
located on a single lattice of larger cell dimensions. 
This larger lattice is called the coincidence-site lattice. 
The importance of such lattices in connexion with sec- 
ondary recrystallization textures was first realized by 
Kronberg & Wilson (1949). Since then several investi- 
gators have used the concept of coincidence-site lat- 
tices in other contexts, for example, grain boundary 
migration in high purity materials (Aust & Rutter, 
1959) and the structure of grain boundaries in diamond 
(Hornstra, 1960), in metals and alloys (Brandon, Ralph, 
Ranganathan & Wald, 1964) and in sphalerite (Holt, 
1964). This continuing interest in the coincidence-site 
lattice model makes it worth while to consider a general 
approach to the generation of such lattices. The mis- 
orientation relationship between two crystals can be 
given as an axis-angle pair. It is the purpose of this 
article to derive the angular values about an axis [hkl] 
in the cubic system which will lead to a coincidence- 
site lattice relationship. 

Previous work 

Frank (1958) has indicated a procedure for obtaining 
coincidence-site lattices for rotations about [100] and 
[111]. His procedure for [100] is, briefly, as follows. 
A lattice point is chosen as the origin and a square 
cell is constructed on each line joining the origin to a 
visible point, where visibility is defined in the sense 
used by Hardy & Wright (1945) and indicates that 
there are no other points on the line between the given 
lattice point and the origin. It is seen that each such 
cell is a square cell of dimensions larger than those 
of the original unit cell and can be used to generate 
a coincidence-site lattice. The ratio of the area of the 
new square cell to that of the original lattice is x2+y  2, 
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where (x,y) are the cartesian coordinates of the lattice 
point which is joined to the origin. This ratio is also 
equal to the multiplicity, 27, of the coincidence site lat- 
tice, which may be defined as the reciprocal of the 
density of common points. The procedure for [110] is 
more complicated as there are no squares. Dunn & 
Brandhorst (1958) and Dunn (1959) have worked out 
an extension of Frank's procedure. They essentially 
determine the area of a rectangle constructed on the 
line joining the origin to a visible point. 

Alternative approach 

The work of Friedel (1926) permits the derivation of 
axis-angle pairs for coincidence by a different route. 
(Goux has pointed this out independently in a private 
communication). The rotation of 180 ° around [hkl] in 
the cubic system gives rise to a coincidence site lattice 
of Z = h 2 + k 2 + l 2, if h 2 + k 2 + l 2 is odd or (h 2 + k 2 + 12)/2, 
if h E + k 2 +  l 2 is even. Also in the cubic system the rela- 
tionship of [hkl] - 180 ° can equally well be represented 
in twenty-three other ways. These twenty-four rotations 
which describe the same orientation relationship are 
just the combination of any particular original rotation 
with the 24 proper symmetry rotations associated with 
a cube having indistinguishable faces. The alternative 
relationships can be found by using analytical equations 
(Goux, 1961) or transformation matrices (Hornstra, 
1960). This approach leaves the question of finding the 
possible Z" values for a given axis undecided. 

Similar lattices 

Coxeter (1948) has dealt with the problem of finding 
larger similar lattices without reference to lattice coin- 
cidence. He has termed them 'compound tessellations' 
and has given x2+y  2 and x2+xy+y  2 as generating 
functions for square and hexagonal lattices. The only 
restriction on x and y is that they should be non-negative 
integers. He has also shown that a square cell cannot 
be constructed on a hexagonal lattice and vice versa. 
This work provided the stimulus for discovering a 
generating function for coincidence-site lattices. It may 
be noted that Loeb (1964) has used the function 
x2+ xy +y2 for finding structural possibilities for corn- 
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pounds• [These functions also have the entirely un- 
suspected property of giving the minimum number of 
colours necessary for maps on surfaces of varying com- 
plexity (cf. Coxeter, 1961)]• 

A generating function 

Consider the two-dimensional rectangular lattice shown 
in Fig. 1. The axial ratio, R, of its unit cell is restricted 
to rational values. Each rotation of the lattice point 
( x , - y )  into (x,y) will give rise to a coincidence site 
lattice as the row on which ( x , - y )  lies and the row 
perpendicular to it come into coincidence. The angle 
of the rotation is 2 tan-Z(y/x)R. The area ratio, Z', 
of the unit cell of the similar, large rectangular lattice 
to that of the original lattice is xZ+ RZy 2. The multi- 
plicity, ZR of the coincidence site lattice is either equal 
to Z' or a submultiple of Z', if there are additional 
coincidences within the larger rectangular cell. This 
point can be settled by inspection (stage 1). 

Now it is possible to pick out such a rectangular 
lattice on any plane (hkl) in the cubic system. [k z + l 2, 
hk, hi] and [0l/~] are perpendicular directions in the plane 
(hkl). These directions can be used to construct a rect- 
angular cell with the axial ratio, 1/~/-++ k z + lL It is easily 
established from a consideration of the area of the cell 
that there are (kZ+ l 2 - 1 )  atoms within the unit cell, 
each one of which is the origin of similar rectangular 
cells displaced from the one illustrated. 

First, Z'R for the rectangular lattice in the basal plane 
is determined by the process described above. Sp, the 
multiplicity of the two-dimensional coincidence-site lat- 
tice on the basal plane, is equal either to ZR or to a 
multiple, if the rectangular lattices generated by the 
( M + I  z -  1) atoms within the unit cell do not come 
into the same degree of coincidence. This point can 
be settled by inspection (stage 2). In the third step one 
has to consider the planes parallel to the basal plane. 
Z'T, the multiplicity of the three-dimensional coin- 
cidence site lattice is either equal to Z'p or (h z + k 2 + l 2) 
Z'p, if the other planes in the stacking sequence do 
not come into the same degree of coincidence. Almost in- 
variably it is found that ST SO derived is equal to Z 
as given by the formula ~r=xZ+RZy2. This is because 
many of the factors tend to cancel out. It is to be hoped 
that later work will utilize this point to eliminate the 
several stages of inspection. Until then this method 
can serve for a systematic derivation of coincidence 
site lattice• 

As Z' has odd values only in the cubic system (Frie- 
del, 1926), it is necessary to deride the even values of 
Z" by multiples of two to obtain the correct multiplicity. 
From the generating function X = X 2 ÷ (h 2 ÷ k 2 ÷/2)y2, 
X values are arrived at by a systematic assignment of 
integer values for x and y. The criterion of visibility 
introduced above (see Previous work) then demands 
that x and y should be relatively prime, i.e. have no 
common divisors except one. This merely means that 
it is not necessary to consider points with coordinates 
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Fig. 1. Construct ion of a coincidence-site lattice in a rectangular 
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Fig. 2. This diagram illustrates the use of the generating func- 

tion Z ' = x 2 + 3 y  2 for [111] rotations. The visible points a r e  

marked with the appropriate multiplicity numbers. The 
method of representation follows that of Dunn & Brandhorst  
(1958). (210) 
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Fig.3. Coincidence-site lattice (with Z '=9)  based on [210]. 
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(nx, ny) as they generate  the same coincidence site lat- 
tice as point  (x,y). 

We will now il lustrate the me thod  with reference to 
the axis [111]. F ig .2  shows the basal  plane (111) in a 
f.c.c, lattice. The  rec tangula r  unit  cell is marked .  

Fig. 3 gives the  coincidence site latt ice with S =  9 for  
the case of  [210] in b.c.c. Table  2 gives a list o f  Z values 
ar r ived at  by this method .  

I t  is wor th  not ing  tha t  the genera t ing funct ion de- 
veloped here applies to the cubic system and  hence 
has equal  val idi ty in the three cubic lattices. (This is 
clear since the fo rmu la  for  the mult ipl ici ty values in- 
volves only the indices of  the axis.) A n  equivalent  state- 
ment  is tha t  Z and  co values are the same for  a given 
axis in all the three lattices. 

The a u t h o r  is grateful  to D r  C. G.  D u n n  and  Profes-  
sor F. C. F r a n k  for  m a k i n g  avai lable  their  unpubl i shed  
results and  also for  their  encou ragemen t  t h rough  cor- 
respondence.  He is grateful  to Professor  A. H. Cottrel l ,  
D r  D . G . B r a n d o n  and  colleagues in C a m b r i d g e  for  
m a n y  s t imula t ing  discussions. 

Table  1. Coincidence site lattice relationships ]br [111] 

,~ = X 2 -{- 3y2 

X y Z 

0 1 3 
1 1 1 (=4/4) 
2 1 7 
3 1 3 (=  12/4) 
4 1 19 
5 1 7 (=  28/4) 
6 1 39 

x y Z 
1 0 1 
3 1 3 (=  12/4) 
3 2 21 
1 1 1 ( = 4 / 4 )  
3 4 57 
3 5 21 (=  84/4) 
1 2 13 

o9=2 t a n - 1 Y .  1/3 
x 

(1) 

180 ° 
120 
81 "8 
60 
46"8 
38"2 
32-2 

, (O 
0 o 

60 
98"2 

120 
133.2 
141 "8 
147.8 

Table  2. Coincidence site lattice relationships for [210] 

~' = X 2 + 5y 2 CO = 2 t an -1  Y .  l/5 
x 

A 

x y Z co 
0 1 5 180 ° 
1 1 3 ( = 6 / 2 )  131"8 
2 1 9 96"4 
3 1 7 (=  14/2) 73"4 
4 I 21 58"4 
5 1 15 ( = 30/2) 48"2 

B 
x y Z co 
1 0 1 0 ° 
5 1 15 ( = 30/2) 48-2 
5 2 45 83 "6 
5 3 35 (=70/2) 106"6 
5 4 105 121"6 
1 1 3 ( = 6 / 2 )  131"8 

References  

AUST, K. T. & RUTTER, J. W. (1959). Trans. A. L M. E. 215, 
119; 25, 409. 

BRANDON, D. G., RALPH, B., RANGANATHAN, S. 86 WALD,  
M. (1964). Acta Metallurg. 12, 813. 

COXETER, H. S. M. (1948). Reports of a Mathematical Col- 
loquium (2), 8, 18. 

COXETER, H. S. M. (1961). Introduction to Geometry. New 
York:  John Wiley. 

DUNN, C. G. (1959). Ann. Mtg. A. I. M. E., San Francisco. 
D U N N ,  C .  G .  86 BRANDHORST, H .  (1958). Unpublished work. 
FRANK,  F. C. (1958). Research Laboratory Lecture. 
FRIEDEL, G. (1926). Lefons de Cristallographie, Paris. 
Govx,  C. (1961). Mdmoires Scientifiques Rev. Metallurg. 58, 

661. 
HARDY, G. H. 86 WRIGHT, E. M. (1945). The Theory of 

Numbers, p. 29. Oxford Univ. Press. 
HOLT, D. B. (1964). J. Phys. Chem. Solids, 25, 1385. 
HORNSTRA, J. (1960). Physica, 26, 198. 
LOEB, A. L. (1964). Acta Cryst. 17, 179. 
KRONBERG, M. L. & WILSON, F. H. (1949). Trans. A. L M. E. 

185,  501. 


